Vũ trụ mãi mãi còn đó

Nhìn vũ trụ vào một đêm đẹp trời có trăng sao, chúng ta thấy có một quá khứ của nó. Mặt trăng cách trái đất khoảng bốn trăm ngàn cây số, như vậy chỉ hơn một giây đồng hồ là ánh sáng có thể truyền đến trái đất: Lúc chúng ta ngắm trăng là lúc chúng ta thấy hình thù của nó hơn một giây đồng hồ trước đó.

Đối với các vì sao xa xôi, hình ảnh lúc chúng ta đang nhìn là hình ảnh từ mấy chục, mấy trăm hoặc mấy ngàn năm về trước. Mỗi vì sao có một khoảng cách đến mặt đất khác nhau do đó chúng ta đang nhìn thấy chúng vào những thời điểm khác nhau. Bầu trời cho chúng ta một hình ảnh của những quá khứ khác nhau. Mỗi lần nhìn mặt trời mọc chúng ta thấy được hình ảnh của nó tám phút đồng hồ về trước.Vũ trụ bao la và huyền bí, nhưng phải chăng vũ trụ sẽ mãi mãi còn đó?

Ngày xưa con người vẫn tin rằng trái đất là một mặt phẳng nằm trên một tháp rùa sâu vô tận. Cho đến khoảng năm 340 trước công nguyên Aristotle mới khám phá ra trái đất tròn. Tuy nhiên ông cho rằng trái đất không di chuyển, và là trung tâm của vũ trụ, còn mặt trời, mặt trăng, các hành tinh và tinh tú khác đều quay quanh trái đất theo những đường tròn. Đến hơn 500 năm sau, vào thế kỷ thứ hai, Ptolemy vẫn cho rằng trái đất đứng giữa trung tâm, quay quanh bởi tám mặt cầu mang mặt trăng, mặt trời, những vì sao và năm hành tinh vừa được khám phá thời bấy giờ là Thủy tinh, Kim tinh, Hỏa tinh, Mộc tinh và Thổ tinh. Những hành tinh này di chuyển theo những vòng tròn gắn liền với những mặt cầu nhỏ, còn mặt cầu lớn nhất ở vòng ngoài thì mang những vì sao tuy có vị trí tương đối cố định lẫn nhau nhưng tất cả đều quay quanh bầu trời. Ptolemy không nói rõ những gì chứa đựng ngoài cái mặt cầu lớn nhất ấy, hơn nữa với mô hình này Ptolemy phải giả thiết mặt trăng có lúc lớn gấp đôi so với những lúc khác! Mãi đến năm 1514 Coernicus mới đưa ra một mô hình mới cho rằng mặt trời cố định ở trung tâm còn trái đất và các hành tinh khác quay tròn quanh mặt trời. Gần một thế kỷ sau đó mô hình này được hai nhà thiên văn Kepler người Đức và Galileo người Ý ủng hộ. Galileo dùng viễn vọng kính vừa được phát minh và phát hiện rằng không phải mọi tinh tú và mặt trời đều quay quanh trái đất như Aristotle và Ptolemy tưởng. Kepler điều chỉnh mô hình Copernicus, cho rằng các hành tinh quay quanh mặt trời theo những đường bầu dục thay vì những đường tròn, và đã chứng tỏ khá phù hợp với thực nghiệm.

Năm 1687 Newton đưa ra định đề về sức hút vũ trụ và đã chứng minh bằng toán học rằng trọng lực chính là nguyên nhân làm cho mặt trăng quay quanh trái đất cũng như làm cho trái đất và các hành tinh khác quay quanh mặt trời theo những hình bầu dục. Lý thuyết về sức hút vũ trụ của Newton đồng thời cũng chứng minh rằng vì sức hút lẫn nhau của vật chất, các vì sao không thể cố định được, do đó vũ trụ là một vũ trụ động. Tuy nhiên tư tưởng vào thời bấy giờ nói chung vẫn chỉ có hai khuynh hướng: vũ trụ nếu không tồn tại vĩnh viễn dưới một trạng thái không thay đổi thì cũng được thành lập vào một thời điểm hữu hạn trong quá khứ ít nhiều dưới một trạng thái na ná như vũ trụ chúng ta quan sát bây giờ. Do đó thay vì nghĩ đến một mô hình cho một vũ trụ động, có thể bành trướng ra hay co rút lại, nhiều người cố gắng điều chỉnh lý thuyết về trọng lực, cho rằng trọng lực có sức đẩy (thay vì luôn luôn có sức hút) tại những vùng có khoảng cách lớn, hơn nữa tổng số những vì sao phải vô hạn. Bằng cách đó, chuyển động bầu dục của các hành tinh quanh mặt trời vẫn không thay đổi nhưng sức hút giữa những vì sao gần cân bằng với sức đẩy của những vì sao xa tạo cho sự phân phối của những vì sao một sự cân bằng. Lập luận này sau đó bị bác bỏ, bởi vì một sự cân bằng như thế nếu có cũng không thể bền vững.

Năm 1924 Hubble chứng minh rằng Ngân Hà không phải là thiên hà duy nhất trong vũ trụ, mà thật ra có rất nhiều thiên hà khác cách xa nhau bằng những khoảng trống không rộng lớn. Ông đã dùng những phương pháp gián tiếp sau đây để đo khoảng cách đến những thiên hà ấy: Độ sáng thấy được của một tinh tú tùy thuộc vào hai yếu tố, một là số lượng ánh sáng tinh tú ấy phát ra gọi là tính sáng (luminosity) và hai là khoảng cách đến tinh tú đó. Đối với những tinh tú gần chúng ta, chỉ cần đo độ sáng thấy được và khoảng cách thì biết được tính sáng. Hubble lập luận rằng có một số tinh tú luôn luôn có tính sáng giống nhau. Ông chọn hai tinh tú cùng loại như thế, một tương đối gần chúng ta (như vậy có thể đo được tính sáng) và một thuộc vào một thiên hà mà ông muốn đo khoảng cách. Vì hai tinh tú này có cùng tính sáng, chỉ cần đo độ sáng thấy được của vì sao xa xôi kia là có thể tính ra khoảng cách đến nó. Phương pháp được lặp lại cho một số tinh tú cùng loại trong cùng một thiên hà, và ông thấy rằng những khoảng cách tính được đều như nhau, chứng tỏ kết quả những số đo này đáng tin cậy. Bằng phương pháp này ông đã đo khoảng cách đến 9 thiên hà khác nhau.

Bây giờ chúng ta biết rằng Ngân Hà là một trong khoảng vài trăm tỷ thiên hà có thể quan sát được bằng những viễn vọng kính tối tân, và mổi thiên hà có khoảng vài trăm tỷ vì sao. Ngân Hà được tin là một thiên hà có hình xoắn ốc, đường kính khoảng một trăm ngàn năm ánh sáng (một năm ánh sáng là khoảng cách ánh sáng di chuyển trong một năm). Những vì sao trong những cánh xoắn ốc di chuyểnchung quanh trung tâm của Ngân Hà một chu kỳ khoảng vài trăm triệu năm. Mặt trời của chúng ta chỉ là một vì sao bình thường, kích thước trung bình, mầu vàng, ở gần bờ trong của một trong những cánh xoắn ốc, thuộc thế hệ thứ hai hoặc thứ ba trong quá trình hình thành tinh tú.

Năm 1929 Hubble dùng hiệu ứng Doppler đã khám phá ra rằng thật ra những thiên hà đang di chuyển xa dần chúng ta, hơn nữa những thiên hà ở càng xa thì sự di chuyển càng nhanh hơn. ( lược về hiệu ứng Doppler: Ánh sáng chúng ta nhìn thấy được gồm những làn sóng khác nhau trong điện từ trường, với những độ dài sóng cực bé, từ bốn đến bảy phần 10 triệu của một mét. Nhờ những độ dài sóng khác nhau của ánh sáng mà chúng ta có thể thấy được những mầu sắc khác nhau. Độ dài sóng lớn nhất xuất hiện ở phía màu đỏ còn độ dài sóng bé nhất ở phía màu xanh của quang phổ. Giả sử có một nguồn sáng đang di chuyển đến chúng ta. Khi nguồn sáng phát đỉnh sóng kế tiếp, đỉnh sóng này sẽ gần chúng ta hơn so với trường hợp nguồn sáng không di chuyển, do đó độ dài sóng của những sóng chúng ta nhận được sẽ ngắn hơn. Vì vậy quang phổ chúng ta nhận được sẽ chuyển về phía màu xanh mà ta gọi là sự hướng xanh – blue-shift. Ngược lại, nếu nguồn sáng di chuyển xa dần chúng ta, chúng ta sẽ nhận được sự hướng đỏ – red-shift. Khi quan sát ánh áng phát ra từ những vì sao xa xôi của những thiên hà khác, Hubble quan sát được sự hướng đỏ, nghĩa là những vì sao đang di chuyển xa dần trái đất).

Giả thuyết vũ trụ bành trướng hàm ý rằng trước đây vật chất đã rất gần nhau. Khoa học đã tính toán được rằng cách đây khoảng mười lăm tỷ năm vật chất qui tụ tại cùng một điểm với mật độ cao vô hạn. Vậy, theo quy luật khoa học tự nhiên, phải có một vụ nổ lớn (the big bang) xảy ra vào một thời điểm hữu hạn trong quá khứ.

Vào thời khắc đó những định luật khoa học không có giá trị áp dụng. Tất cả những gì, nếu có, xảy ra trước vụ nổ lớn chúng ta đều không hay biết. Vài năm trước khi Hubble khám phá vũ trụ bành trướng, Friedmann, một toán học gia người Nga, đã chứng minh rằng nếu vũ trụ trông giống nhau khi được nhìn theo những hướng khác nhau từ bất kỳ ở vị trí nào trong vũ trụ, thì trước đây trong một quá khứ hữu hạn, phải có một vụ nổ lớn (mà toán học gọi là một dị điểm) và sau đó bành trướng ra. Cho đến ngày nay, các thiên hà, kể cả Ngân Hà, đang di chuyển xa dần nhau ra.

Bài toán Friedmann có ba lời giải: Một (do chính Friedmann tìm thấy) là một vũ trụ hữu hạn do sự bành trướng chậm chạp cho đến một lúc nào đó sức hút giữa các thiên hà trở nên mạnh hơn sức bành trướng, và vũ trụ bắt đầu thu nhỏ lại. Lời giải thứ hai, ngược lại, vì sức bành trướng mạnh đến nỗi sức hút giữa các thiên hà không đủ để có thể chận đứng sự bành trướng, và vũ trụ tiếp tục bành trướng ra vô hạn. Lời giải thứ ba là vũ trụ trong đó sức bành trướng vừa đủ mạnh để không bị sức hút trọng lực chận lại, tuy nhiên tốc độ bành trướng chậm dần, nhưng không bao giờ dừng lại.

Hai lời giải sau cho chúng ta hình ảnh của một vũ trụ vô hạn, có một khởi điểm nhưng không có kết thúc, trong lúc lời giải đầu chứng minh một vũ trụ hữu hạn và có thể lặp đi lặp lại từng chu kỳ: Vũ trụ bành trướng sau vụ nổ lớn, rồi thu nhỏ lại thành một điểm, chuẩn bị cho một vụ nổ lớn kế tiếp. Nhưng thực ra mô hình nào mới mô tả đúng vũ trụ thực sự của chúng ta?

Các nhà khoa học cố gắng trả lời bằng cách so sánh sức bành trướng với sức hút trọng lực giữa các thiên hà. Hiệu ứng Doppler có thể dùng để đo sức bành trướng, tuy nhiên vì khoảng cách đến các thiên hà chỉ có thể đo được bằng phương pháp gián tiếp nên kết quả không thể tin cậy được.

Người ta phỏng đoán vũ trụ đang bành trướng khoảng từ 5% đến 10% cho mỗi một tỷ năm. Đối với việc đo mật độ vật chất trong vũ trụ thì mức độ chính xác lại càng mỏng manh hơn nữa. Người ta ước tính toàn vật chất trong vũ trụ, kể cả chất tối (dark matter) cộng lại cũng chỉ khoảng một phần mười so với sức hút cần thiết để có thể chận đứng sự bành trướng. Một điều không chắc chắn khác của khoa học là không biết vật chất có còn ở dưới dạng nào khác nữa mà chúng ta chưa thăm dò được chăng để sức hút trọng lực có thể trấn áp sự bành trướng.

Gần đây, Hawking đã khéo léo phối hợp lý thuyết tương đối tổng quát và cơ học nguyên lượng bằng cách dùng “thời gian ảo”, đề nghị một mô hình mới cho vũ trụ. Cũng nên nói thêm ở đây rằng lý thuyết tương đối tổng quát mô tả trọng lực và cấu trúc của vũ trụ ở kích thước lớn, từ vài dặm đến hàng tỷ tỷ dặm và do đó thích hợp để mô tả vũ trụ sau vụ nổ lớn.

Trái lại cơ học nguyên lượng mô tả những hiện tượng ở tầm vóc cực bé, cỡ một phần triệu của một phần triệu phân Anh, thích hợp để mô tả vụ nổ lớn. Điều đáng tiếc là hai lý thuyết này không phù hợp lẫn nhau, không thể cả hai đều đúng.

Theo lý thuyết tương đối tổng quát, “lịch sử” (quỹ đạo chuyển động) của một hạt vật chất giữa hai vị trí khác nhau chỉ có một, nhưng theo nguyên lý bất định của Heisenberg trong cơ học nguyên lượng (phát biểu rằng trong cùng một lúc không thể xác định chính xác cả vị trí lẫn vận tốc của một hạt vật chất), một hạt vật chất có thể có nhiều lịch sử khác nhau giữa hai vị trí khác nhau. Do đó vấn đề lớn nhất hiện nay là tìm một lý thuyết mới có thể kết hợp cả hai lại với nhau. Vì thực ra những vật thể với kích thước lớn là tổng hợp của những hạt cực bé, người ta tin rằng sự kết hợp hai lý thuyết trên đây là một vấn đề có thể thực hiện được trong nay mai.

Theo mô hình Hawking đề nghị, vũ trụ là hữu hạn, không có biên giới và biến hóa theo thời gian ảo tăng dần. Vũ trụ bắt đầu từ một điểm (nhưng không phải là dị điểm), bành trướng theo thời gian ảo. Khi đạt đến kích thước lớn nhất, vũ trụ bắt đầu thu nhỏ lại theo chiều tăng dần của thời gian ảo cho đến lúc trở lại thành một điểm (cũng không phải là dị điểm). Nguyên lý bất định hàm ý rằng mật độ của vũ trụ ban đầu không thể hoàn toàn đồng đều, và đó là lý do để những thiên hà, tinh tú và vạn vật, kể cả chúng ta, được thành lập.

Tóm lại giả thiết không biên giới của vũ trụ phối hợp với nguyên lý bất định của cơ học nguyên lượng có thể giải thích mọi cấu trúc phức tạp mà chúng ta quan sát được trong vũ trụ. Tuy nhiên hình ảnh của vũ trụ tương ứng với thời gian thực thì, khoảng 15 tỷ năm trước đây, vũ trụ có một kích thước cực bé (tương ứng với kích thước lớn nhất của vũ trụ trong thời gian ảo). Sau đó (theo thời gian thực) bành trướng ra. Vì sức bành trướng nói chung vừa đủ mạnh so với sức hút trọng lực giữa các thiên hà nên sự bành trướng có thể duy trì một khoảng thời gian dài. Sau đó tinh tú bị cháy rụi, protons và neutrons của các tinh tú thoái hóa thành những hạt ánh sáng và bức xạ. Entropy (dùng để đo mức độ vô trật tự) của vũ trụ đạt đến mức tối đa và do đó vũ trụ vĩnh viễn ở trạng thái cân bằng đó. (Đối với một hệ thống kín, trạng thái cân bằng tương ứng với entropy cực đại.)

Vũ trụ (với thời gian ảo) không có dị điểm có lẽ là điều mong ước của con người bởi vì sự sống có thể tránh được nạn diệt vong rơi vào những dị điểm vực thẳm, hơn nữa vũ trụ với thời gian ảo là bất sinh bất diệt. Hawking cho rằng thời gian ảo có thể thực sự là thật, trái lại cái thời gian mà chúng ta vẫn tưởng là thật thực ra chỉ là một bịa đặt do trí tưởng tượng của chúng ta mà thôi.

Nhưng nếu thời gian vẫn là cái thời gian thông thường chúng ta đang dùng, phải chăng vũ trụ cuối cùng chỉ là một trạng thái hỗn loạn của các hạt ánh sáng và bức xạ? Với niềm tin vũ trụ sẽ co rút trở về một trạng thái tương đối ổn định (nghĩa là entropy phải giảm xuống), ban đầu tôi nghĩ rằng vào thời gian co rút đó định luật nhiệt động lực về sự gia tăng entropy không còn áp dụng được nữa. Thật ra các định luật khoa học chỉ mất giá trị tại các dị điểm mà thôi và không-thời-gian trong giai đoạn co rút không thể chỉ gồm toàn những dị điểm. Một khả năng hợp lý hơn để vũ trụ có thể co rút trở lại là trường hợp vũ trụ không phải là một hệ thống kín.

Chúng ta biết rằng theo nguyên lý thứ hai của nhiệt động lực học, entropy của một hệ thống kín không bao giờ giảm xuống, và sẽ đạt đến mức cực đại khi hệ thống kín đó đạt đến sự cân bằng nhiệt động lực. Khi ta cho một vật nóng tiếp xúc một vật lạnh và giả sử hai vật thể này tạo thành một hệ thống kín, nhiệt sẽ di chuyển từ vật nóng sang vật lạnh. Sự phân phối nhiệt không đồng đều ban đầu được xem như tương đối có trật tự, do đó entropy của hệ thống bé hơn so với trạng thái cuối cùng của hệ thống khi nhiệt đã được phân bố đồng đều, bởi vì ở trạng thái cuối cùng này nhiệt năng được phân bố một cách xáo trộn giữa tất cả các phân tử của hệ thống.

Đối với sinh vật thì ngược lại, khi một sinh vật phát triển hay sinh sản, entropy giảm xuống, nghĩa là mức độ trật tự gia tăng. Lý do là vì sinh vật đó phải tiêu thụ thức ăn để phát triển, do đó không phải là một hệ thống kín: entropy của sinh vật giảm xuống, và bù lại entropy của môi trường chung quanh gia tăng. Cũng như một chiếc tủ lạnh, dùng điện năng chạy máy để làm lạnh bên trong do đó có trật tự và entropy của máy giảm xuống, trong lúc vì máy nóng lên và tỏa nhiệt ra môi trường chung quanh, entropy bên ngoài gia tăng.

Theo cơ học nguyên lượng, mỗi hạt có thể có vô số lịch sử khác nhau. Trong thí nghiệm dùng để chứng minh tính chất sóng của hạt, người ta bắn những hạt điện tử xuyên qua hai khe hở và nhận được những hàng song song trên một màn ảnh đặt ở phía sau. Kỳ lạ nhất là khi các điện tử được bắn đến các khe hở từng hạt một chúng ta vẫn nhận được những hàng như vậy trên màn ảnh. Điều này chứng tỏ mỗi điện tử đã phải xuyên qua cả hai khe hở cùng một lúc! Nếu có nhiều khe hở hơn mỗi điện tử cũng có thể xuyên qua tất cả những khe hở đó.

Vậy mỗi điện tử có thể có vô số quỹ đạo khác nhau. Sự kiện này đã khiến nhiều khoa học gia tin rằng có thể có vô số vũ trụ khác nhau tồn tại song song với vũ trụ của chúng ta. Nếu vậy vũ trụ chúng ta không còn là một hệ thống kín nữa, và do đó có thể trao đổi năng lượng với những vũ trụ khác để entropy của vũ trụ chúng ta có thể giảm xuống và cuối cùng co rút trở lại một điểm.

Hơn nữa, tại sao chỉ có thể co rút trở lại một điểm mà không thể nhiều hơn? Khi quan sát được sự bành trướng của vũ trụ, người ta cho rằng trước đó vật chất phải qui tụ tại một điểm. Điều này làm tôi nghĩ rằng vũ trụ phải có một trung tâm chính là điểm qui tụ này. Tuy nhiên không có bằng chứng gì cho thấy vũ trụ có một tâm điểm như vậy. Nhưng tại sao trên phương diện toán học, Friedmann đã chứng minh – dưới giả thiết “vũ trụ trông giống nhau khi được nhìn theo những hướng khác nhau từ bất kỳ ở vị trí nào trong vũ trụ” – rằng trong một thời gian hữu hạn trước đây vũ trụ chỉ có một dị điểm?

Tuy phần đầu của giả thiết – vũ trụ trông giống nhau khi được nhìn (từ trái đất) theo những hướng khác nhau – đã được kiểm chứng, nhưng với một sai số, hơn nữa phần sau của giả thiết – vũ trụ trông giống nhau khi được nhìn từ bất kỳ ở vị trí nào trong vũ trụ – thì không thể kiểm chứng. Như vậy phải chăng trong cái thời điểm gọi là ban đầu ấy thật ra có nhiều hơn mộ số dị điểm? Nếu vậy, vũ trụ cuối cùng cũng có thể co rút về nhiều số dị điểm khác nhau. Khi vũ trụ của chúng ta đang co rút có thể có nhiều vũ trụ khác đang bành trướng. Tất cả những vũ trụ hỗ trợ lẫn nhau, sanh sanh diệt diệt.

Tâm Đan

Advertisements

Trả lời

Mời bạn điền thông tin vào ô dưới đây hoặc kích vào một biểu tượng để đăng nhập:

WordPress.com Logo

Bạn đang bình luận bằng tài khoản WordPress.com Đăng xuất / Thay đổi )

Twitter picture

Bạn đang bình luận bằng tài khoản Twitter Đăng xuất / Thay đổi )

Facebook photo

Bạn đang bình luận bằng tài khoản Facebook Đăng xuất / Thay đổi )

Google+ photo

Bạn đang bình luận bằng tài khoản Google+ Đăng xuất / Thay đổi )

Connecting to %s


%d bloggers like this: